Abstract

As a high-voltage cathode material, monoclinic Li3V2(PO4)3 has been proposed as the next-generation commercial electrode for lithium-ion batteries. Nevertheless, it remains a practical challenge to improve the poor electronic conductivity of Li3V2(PO4)3. Herein, we first design and fabricate the Li3V2(PO4)3@C (LVP@C) nanocrystals further modified by graphene and doped with Ce3+-ion via a facile sol-gel method. The Ce3+ doping can form a continuous conductive pathway in the electrode and thus improve the intrinsic electronic conductivity of Li3V2(PO4)3 material. Meanwhile, the residual carbon layer and graphene can also construct a conductive network, which is helpful to enhance the apparent conductivity of Li3V2(PO4)3. Therefore, the graphene and Ce3+ doping co-decorated LVP@C (G-LVCeP@C) composite exhibits better lithium storage capability than the LVP@C and Ce3+-doped LVP@C (LVCeP@C) materials. This novel design provides an effective strategy for the preparation of other electrodes for lithium-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.