Abstract

Coherent hydrous vanadium pentoxide (V 2O 5· nH 2O)–carbon cryogel (CC) nanocomposites were synthesized by electrodeposition of vanadium pentoxide onto the porous carbon scaffold which was derived from resorcinol (R) and formaldehyde (F) organic hydrogels. As-fabricated nanocomposites were characterized by scanning electron microscopy (SEM), along with EDAX and nitrogen sorption isotherms which suggested vanadium pentoxide incorporated in the pores of carbon cryogels. The nanocomposites showed much improved discharge capacity and better cyclic stability as compared to hydrous vanadium pentoxide films deposited on platinum foil. The discharge capacity of the nanocomposites reached 280 mAh g −1 based on the mass of the vandium pentoxide at a current density of 100 mA g −1 and it possessed good cycle stability at different discharge rates. The results demonstrated that electrochemical performances, such as specific discharge capacitance and reversibility of the composite electrode, could be greatly enhanced by the introduction of carbon cryogels (CCs) scaffold with three-dimensionally interconnected porous structure in which V 2O 5· nH 2O homogeneously dispersed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.