Abstract

An investigation is conducted on enhancing lithium-ion intercalation and conduction performance of transparent organo tantalum oxide (TaO y C z ) films, by addition of lithium via a fast co-synthesis onto 40 Ω/□ flexible polyethylene terephthalate/indium tin oxide substrates at the short exposed durations of 33–34 s, using an atmospheric pressure plasma jet (APPJ) at various mixed concentrations of tantalum ethoxide [Ta(OC2H5)5] and lithium tert-butoxide [(CH3)3COLi] precursors. Transparent organo-lithiated tantalum oxide (Li x TaO y C z ) films expose noteworthy Li+ ion intercalation and conduction performance for 200 cycles of reversible Li+ ion intercalation and deintercalation in a 1 M LiClO4-propylene carbonate electrolyte, by switching measurements with a potential sweep from −1.25 to 1.25 V at a scan rate of 50 mV/s and a potential step at −1.25 and 1.25 V, even after being bent 360° around a 2.5-cm diameter rod for 1000 cycles. The Li+ ionic diffusion coefficient and conductivity of 6.2 × 10−10 cm2/s and 6.0 × 10−11 S/cm for TaO y C z films are greatly progressed of up to 9.6 × 10−10 cm2/s and 7.8 × 10−9 S/cm for Li x TaO y C z films by co-synthesis with an APPJ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call