Abstract
The accurate health status evaluation of lithium-ion batteries is crucial for preemptive identification of potential battery failures and averting hazardous incidents, given its essential role in indicating the extent of battery degradation. The challenge in determining the State of Health (SOH) arises from the absence of a precise and standardized definition, as well as the difficulty in measuring essential input variables. Therefore, this paper utilizes current and voltage data during the charge and discharge process as direct inputs for SOH estimation and proposes a deep learning-based lithium-ion battery SOH estimation approach. Specifically, it leverages Bayesian optimized Convolutional Neural Network (CNN) within a data-driven framework. Experimental results demonstrate that the proposed deep learning method achieves a Mean Absolute Error (MAE) of 1% and a Maximum Error (MAX) below 4% in estimation accuracy, highlighting its enhanced precision and robustness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.