Abstract
The electrochemical lithiation capacity of 6H silicon carbide (0001) is found to increase by over 1 order of magnitude following graphitization at 1350 °C in ultrahigh vacuum. Through several control experiments, this Li-ion capacity enhancement is correlated with SiC substrate doping and removal of the native oxide surface layer by thermal annealing, which renders both the bulk and surface electrically conductive. Characterization via multiple depth-resolved spectroscopies shows that lithium penetrates the activated SiC upon lithiation, the bulk lattice spacing does not appreciably change, and the surface structure remains largely intact. The electron energy-loss spectroscopy (EELS) extracted compositional ratio of Li to Si is approximately 1:1, which indicates an intrinsic bulk Li capacity in activated SiC of 670 mAh g–1. In addition, inelastic X-ray scattering spectra show changes in the Si chemical bonding configuration due to lithiation. X-ray scattering data show a decrease in the SiC Bragg peak intensity during lithiation, suggesting changes to the bulk crystallinity, whereas the emergence of a diffuse scattering feature suggests that lithiation is associated with the development of substrate defects. Overall, these results illustrate that the electrochemical capacity of a traditionally inert refractory material can be increased substantially via surface modification, thus suggesting a new strategy for improving the performance of next generation Li-ion battery electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.