Abstract
The optical properties of semiconductor quantum wells embedded in one-dimensional photonic crystal structures are analyzed by a self-consistent solution of Maxwell's equations and a microscopic many-body theory of the material excitations. For a field mode spectrally below the photonic band edge it is shown that the optical absorption and gain are enhanced, exceeding by more than 1 order of magnitude the values of a homogeneous medium. For the photonic crystal structure inside a microcavity the gain increases superlinearly with the number of wells and for more than five wells exceeds the gain of a corresponding vertical-cavity surface-emitting laser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.