Abstract

AbstractThe performance of quasi‐2D perovskite light emitting diodes (LEDs) with mixed small cations, cesium and formamidinium (FA), is significantly affected by their ratio. The best devices obtained for Cs:FA ratio of 1:1 exhibit a maximum external quantum efficiency (EQE) of 12.1%, maximum luminance of 15 070 cd m−2 and maximum current efficiency of 46.1 cd A−1, which is significantly higher (about 3 times) compared to devices with FA only (maximum EQE of 4.1%, maximum luminance of 4521 cd m−2) and Cs‐only (maximum EQE of 4.0%, maximum luminance of 4886 cd m−2). The photoluminescence quantum yield of the Cs:FA 1:1 sample is similarly enhanced, 21.3% compared 5.4% and 6%, for FA‐only and Cs‐only samples, respectively. It can be observed that the Cs:FA ratio significantly affects the crystallization of the perovskite, with the optimal 1:1 ratio resulting in the formation of tetragonal Cs0.5FA0.5PbBr3 phase (different from cubic FAPbBr3 and orthorhombic CsPbBr3) with pronounced preferential orientation as well as a significant reduction in the trap density, which leads to a substantial improvement in the light‐emitting performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.