Abstract

We report on the lifetime of unencapsulated organic photovoltaic diodes (OPVs) based on a ternary blend of poly(3-hexylthiophene) (P3HT), phenyl-C61-butyric acid methyl ester (PCBM) and a soft insulating polymer, poly(methyl methacrylate) (PMMA) as compared to reference binary P3HT:PCBM OPVs. The performance of ternary devices was shown to decay more slowly than that of their binary counterparts to an extent that depends on the relative humidity (RH). The power conversion efficiency of ternary OPVs when stored in a low humidity environment (1% RH) decayed to 80% of their initial value after 200h, almost double that of the reference binary OPVs. AFM measurements suggest that the PMMA forms pillars within the P3HT:PCBM matrix. It is proposed that the PMMA absorbs water in the active layer, and in doing so, slows the rate of deep trap formation that would otherwise lead to enhanced Shockley-Read-Hall recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call