Abstract

Metal–Insulator–Metal (MIM) capacitors are one of the most essential components of radio frequency devices and analog/mixed-signal integrated circuits. In order to obtain high capacitance densities in MIM devices, high-k materials have been considered to be promising candidates to replace the traditional insulators. The challenging point is that the dielectric material must demonstrate high capacitance density values with low leakage current densities. In this work, SrTiO 3 based MIM capacitors have been investigated and the electrical performance of the devices have been optimized by using bilayered systems of Sr 2Ta 2O 7−x/SrTiO 3 with different thicknesses of Sr 2Ta 2O 7−x. Sputtering X-Ray photoelectron spectroscopy (XPS) measurements have been applied to investigate the interfaces between the thin film constituents of the MIM stacks. The optimized bilayered system provides a leakage current density of 8∗10 − 8 A/cm 2 at 2 V (bottom electrode injection) and a high capacitance density of 13 fF/μm 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.