Abstract

The characterization of interlayer coupling in two-dimensional van der Waals heterostructures (vdWHs) is essential to understand their quantum behaviors and structural functionalities. Interlayer shear and layer-breathing (LB) phonons carry rich information on interlayer interaction, but they are usually too weak to be detected via standard Raman spectroscopy due to the weak electron-phonon coupling (EPC). Here, we report a universal strategy to enhance LB modes of vdWHs based on twisted bilayer graphene (tBLG). In both tBLG/hBN and tBLG/MoS2 vdWHs, the resonantly excited electrons in tBLG can strongly couple to LB phonons extended over the entire layers in the vdWHs, whose resonance condition is tunable by the twist angle of tBLG. In vdWHs containing twisted graphene layers with multiple twisted interfaces, the EPC of LB phonons coming from the collective LB vibrations of entire heterostructure layers can be tuned by resonant excitation of programmable van Hove singularities according to each twisted interface. The universality and tunability of enhanced LB phonons by tBLG make it a promising method to investigate EPC and interlayer interaction in related vdWHs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call