Abstract

First time a theoretical approach towards the enhancement of spatial and angular Goos-Hanchen (GH) shift and Imbert-Fedorov (IF) shift for a Gaussian beam and Laguerre-Gaussian beam are observed, designed and simulated in four layer Kretschmann-Raether geometry at a free space wavelength of 1550 nm. Here the proposed configuration comprises a ZnSe prism and a liquid crystal layer of E44 between two silver layers through which spatial and angular GH shift and IF shift can be observed for Gaussian beam as well as Laguerre-Gaussian beam whereas the exact output beam position can only be accurately identified with the composite effect of spatial and angular GH shift and IF shift. Here with the variation of incident angle from 400 to 500, the spatial and angular GH shift and IF shift have been calculated for two types of beams. This idea expedites the concept of optical tuning at μm ranges and reveals the exact output beam position for every experiments with different beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.