Abstract

BackgroundLong QT syndrome mutations in the SCN5A gene are associated with an enhanced late sodium current (INa,L) which may lead to pro-arrhythmic action potential prolongation and intracellular calcium dysregulation. We here investigated the dynamic relation between INa,L, intracellular sodium ([Na+]i) and calcium ([Ca2+]i) homeostasis and pro-arrhythmic events in the setting of a SCN5A mutation. Methods and resultsWild-type (WT) and Scn5a1798insD/+ (MUT) mice (age 3–5 months) carrying the murine homolog of the SCN5A-1795insD mutation on two distinct genetic backgrounds (FVB/N and 129P2) were studied. [Na+]i, [Ca2+]i and Ca2+ transient amplitude were significantly increased in 129P2-MUT myocytes as compared to WT, but not in FVB/N-MUT. Accordingly, INa,L wassignificantly more enhanced in 129P2-MUT than in FVB/N-MUT myocytes, consistent with a dose-dependent correlation. Quantitative RT-PCR analysis revealed intrinsic differences in mRNA expression levels of the sodium/potassium pump, the sodium/hydrogen exchanger, and sodium‑calcium exchanger between the two mouse strains. The rate of increase in [Na+]i, [Ca2+]i and Ca2+ transient amplitude following the application of the Na+/K+-ATPase inhibitor ouabain was significantly greater in 129P2-MUT than in 129P2-WT myocytes and was normalized by the INa,L inhibitor ranolazine. Furthermore, ranolazine decreased the incidence of pro-arrhythmic calcium after-transients elicited in 129P2-MUT myocytes. ConclusionsIn this study we established a causal link between the magnitude of INa,L, extent of Na+ and Ca2+ dysregulation, and incidence of pro-arrhythmic events in murine Scn5a1798insD/+ myocytes. Furthermore, our findings provide mechanistic insight into the anti-arrhythmic potential of pharmacological inhibition of INa,L in patients with LQT3 syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call