Abstract
Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.