Abstract

The tantalum plasma flash X-ray generator is useful for performing high-speed enhanced K-edge angiography using cone beams because K-series characteristic X-rays from the tantalum target are absorbed effectively by gadolinium-based contrast media. In the flash X-ray generator, a 150 nF condenser is charged up to 80 kV by a power supply, and flash X-rays are produced by the discharging. The X-ray tube is a demountable cold-cathode diode, and the turbomolecular pump evacuates air from the tube with a pressure of approximately 1 mPa. Since the electric circuit of the high-voltage pulse generator employs a cable transmission line, the high-voltage pulse generator produces twice the potential of the condenser charging voltage. At a charging voltage of 80 kV, the estimated maximum tube voltage and current were approximately 160 kV and 40 kA, respectively. When the charging voltage was increased, the K-series characteristic X-ray intensities of cerium increased. The K lines were clean and intense, and hardly any bremsstrahlung rays were detected. The X-ray pulse widths were approximately 100 ns, and the time-integrated X-ray intensity had a value of approximately 300 µGy at 1.0 m from the X-ray source with a charging voltage of 80 kV. Angiography was performed using a filmless computed radiography (CR) system and gadolinium-based contrast media. In the angiography of nonliving animals, we observed fine blood vessels of approximately 100 µm with high contrasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.