Abstract

Manganese oxides have been regarded as one of the most promising electrode materials for energy storage systems. Especially, they can be used as battery-type electrodes in hybrid supercapacitors to achieve high energy density and power density at the same time. In such an application, the redox reaction on the battery-type electrodes needs to speed up to match the fast charging-discharging process of the counter capacitive electrodes. Herein, we intercalated K+ ions into MnO2 to enlarge the interlayer space as channels for ion diffusion, and coated the particles with carbon layer to achieve fast charging/discharging ability. The obtained KxMnO@C particles delivered a high specific capacitance of 1039 F g−1 in 5 M LiTFSI aqueous electrolyte. Coupled with activated carbon anode, the hybrid supercapacitor showed outstanding energy and power density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.