Abstract

We have performed single-active-electron numerical calculations of neon- and argonlike atoms interacting with short, intense, circularly polarized laser pulses at wavelengths between 10 nm and 1000 nm. Our results reveal a surprisingly large change by a factor of about 100 in the ionization ratio of electrons in initial states counter-rotating with respect to the field over corotating electrons in the previously unexplored intermediate few-photon ionization regime. The physical mechanism behind this observation is related to resonant enhanced ionization via states close in energy to the initial states. These doorway states are accessible exclusively from the initial state for counter-rotating electrons within the respective wavelength regime. The results may open a new route for controlling the generation of spin-polarized electrons by ultrashort laser pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.