Abstract
AbstractThe formation of collisionless electrostatic shock (CES) and ion acceleration in thin foils irradiated by intense laser pulse is investigated using particle-in-cell simulation. The CES can appear in the expanding plasma behind the foil when self-induced transparency occurs. The transmitting laser pulse can expel target-interior electrons, in addition to the electrons from the front target surface. The additional hot electrons lead to an enhanced and spatially-extended sheath field behind the foil. As the CES propagates in the plasma, it also continuously forward-reflects many of the upstream ions to higher energies. The latter ions are further accelerated by the enhanced sheath field and can overtake and shield the target-normal sheath accelerated ions. The energy gain of the CES accelerated ions can thus be considerably higher than that of the latter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.