Abstract

While sterically stabilized liposomes (SSL) can passively accumulate into tumor tissue due to the effect of enhanced permeability and retention (EPR), the intracellular uptake of the entrapped anticancer drugs by the tumor cells should be a determinant step for their antitumor activities. Therefore, strategies that can enhance the intracellular uptake of SSL into tumor cells could lead to an improved therapeutic efficacy for the drugs. To check this possibility, RGD-mimetic-modified SSL (RGDm-SSL) were constructed aimed to achieve tumor accumulation as well as enhanced intracellular delivery, and were loaded with doxorubicin (DOX), an anticancer drug. Flow cytometry and confocal microscopy reveal that RGDm-SSL facilitated the DOX uptake into the melanoma cells via integrin-mediated endocytosis. DOX-loaded RGDm-SSL (RGDm-SSL-DOX) displayed higher cytotoxicity on melanoma cells than DOX-loaded SSL (SSL-DOX). Tissue distribution and therapeutic experiments were examined in C57BL/6 mice carrying melanoma B16 tumors. RGDm-SSL-DOX displayed similar DOX accumulation in tumor tissue to that of SSL-DOX but showed significantly lower DOX level in blood and remarkably higher DOX level in spleen than SSL-DOX. Administration of RGDm-SSL-DOX at a dose of 5 mg DOX/kg resulted in effective retardation of tumor growth and prolonged survival times compared with SSL-DOX. These results suggest that RGDm-modified SSL may be a promising intracellular targeting carrier for efficient delivery of chemotherapeutic agents into tumor cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call