Abstract

Polymer hydrogel-based solid-state supercapacitors exhibit great potential applications in flexible devices. Nevertheless, the poor electrode-electrolyte interfacial properties restrict their advances. Herein, by taking the well-developed polyvinyl alcohol (PVA)/H2SO4 gel electrolyte and the graphene film electrode as the prototype, a very simple strategy is demonstrated to improve the interfacial affinity between the electrode and the hydrogel electrolyte by a preadsorbed highly hydrophilic polyzwitterion layer of poly(propylsulfonate dimethylammonium propylmethacrylamide) (PPDP) on the electrode surface. Electrochemical measurements confirm that the charge-transfer resistance on the interface is effectively reduced after modification with PPDP. Consequently, the obtained areal capacitance experiences a 3-fold increase compared to the unmodified ones. Results from electrochemical quartz crystal microbalance with dissipation demonstrate that more ions can be reversibly transferred on the modified interface during the change-discharge cycles, suggesting that the accessible surface area on the electrode is also increased. The hydrophilic PVA layer shows a similar function but with a much smaller efficiency. The strategy depicted here is highly universalizable and can be generalized to different electrode/electrolyte systems or other electrochemical energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.