Abstract

Physically anchoring carbon nanotubes (CNTs) onto the interface of immiscible polymer blends has been extensively reported; however, enhancement of physical properties of the blends has seldom been achieved. Herein, we used CNTs with reactive epoxide groups and long poly(methyl methacrylate) (PMMA) tails as a thermodynamic compatibilizer for immiscible poly vinylidene fluoride/poly l-lactide (PVDF/PLLA) blends. The CNTs acted as an efficient compatibilizer and bridged the two phases through physical entanglement and chemical reaction. The sea-island structure of the blend transformed into a bicontinuous structure for CNT contents greater than 3 wt %. The mechanical properties, including ductility and tensile strength, thermal properties, and electrical conductivities were all enhanced by the CNTs compatibilizer. This strategy thermodynamically compatibilized by reactive nanofillers paves the way for advanced blend nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call