Abstract

Poly(3-hexylthiophene) (P3HT) represents a promising hole transport material for emerging perovskite solar cells (PSCs) due to its appealing merits of high thermal stability and appropriate hydrophobicity. Nonetheless, large energy losses at the P3HT/perovskite interface lead to unsatisfied efficiency and stability of the devices. Herein, two ionic dendritic molecules, 3,3'-(2,7-bis(3,6-bis(bis(4-methoxyphenyl)amino)-9H-carbazol-9-yl)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide and 3,3'-(2,7-bis(bis(4-(bis(4-methoxyphenyl)amino)phenyl)amino)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide, namely, MPA-Cz-FAI and MPA-PA-FAI, are rationally designed as the interlayer to enhance interfacial compatibility. The dendritic backbone with conjugated structure endows the hole transport layer with high conductivity, derived from the more ordered microstructure with larger crystallization and higher connectivity of domain zones. Besides, a better energy level alignment is established between P3HT and perovskite, which enhances the charge extraction and transport yield. In addition, the peripheral methoxy groups enable effective defect passivation at the interface to suppress nonradiative recombination and the quaternary ammonium iodide serving as side chains enable efficient interfacial hole extraction contributing to enhanced charge collection yield. As a result, the dopant-free P3HT-based PSCs modified with MPA-Cz-PAI deliver a champion efficiency of 19.7%, significantly higher than that of the control devices (15.4%). More encouragingly, the unencapsulated devices demonstrate competitive environmental stability by retaining over 85% of its initial efficiency after 1500 h of storage under humid conditions (70% relative humidity). This work provides an effective molecular design strategy for interface engineering, envisaging a bright prospect for the further development of efficient and stable perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.