Abstract

Interior Permanent Magnet Synchronous Motor (IPMSM) motion-sensorless speed control necessitates precise knowledge of rotor flux, speed, and position. Due to numerous non-ideal aspects, such as converter nonlinearities, detection errors, integral initial value, and parameter mismatches, the conventional first-order integrator’s estimated rotor flux experiences a DC offset (Doff). Low-pass filters (LPF) with a constant cut-off frequency yield accurate estimates only in the medium- and high-speed range; however, at the low-speed area, both magnitude and phase estimates are inaccurate. The presented technique resolves the aforementioned issue for a broad speed range. In order to achieve precise flux estimation, this article presents an improved technique of flux estimator with two distinct drift mitigation strategies for the motion-sensorless field-oriented control (FOC) system of IPMSM. Using the orthogonality of the α- and β-axes, the proposed drift elimination system can estimate drift in different situations while maintaining a high level of dynamic performance. The stator flux linkage (SFL) computation in the synchronous coordinate is established from the estimation of the rotating shaft’s permanent magnetic flux linkage orientation and the statistical equations model of the SFL. By comparing the calculated SFL vector to the SFL vector derived from the stator winding voltage and currents integral model with a drift PI compensation loop, a feedback loop is formed to neutralize integral drift, and the rotational speed and position of an IPMSM is estimated utilizing the vector product of the two flux linkages in a phase-locked loop. Theoretical interpretation is presented, and Matlab Simulink simulations, as well as experimental outcomes, consistently demonstrate that the suggested estimation techniques can eliminate the phenomenon of flux drift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call