Abstract
Enhanced transmission of light through nanostructures has always been of great interest in the field of plasmonics and nanophotonics. With the aid of near-field effects, the transmission of the electromagnetic waves can be enhanced or suppressed. Much of the work on enhanced transmission has been shown to be frequency-selective. However it is possible to increase the transmission over a large frequency range by using graphene, which has shown broadband properties in many applications. Here, we propose enhanced transmission in wire grid gold structure making use of continuous graphene sheets. We use finite-difference time-domain simulations to study the optical properties of this graphene-metal hybrid structure at mid infrared (mid-IR) wavelengths. The grating structure in wire grid gold provides an ideal platform to match the momentum and excite the surface plasmon polaritons (SPPs) in monolayer graphene. Our numerical calculations show that the local electromagnetic field around the graphene is largely enhanced due to surface plasmons. Moreover, with the highly confined SPPs coupling with the incident light, the transmission through the whole structure can be broadly enhanced in the mid infrared region. We also analyze the effect of the spectrum with different periods and gold nanowire widths to evaluate the size effects of the plasmons in graphene. In addition, by tuning the Fermi level, one can control the wavelength range at which the transmission is enhanced. The mechanism of the enhancement will be explained in the calculated electric field distribution. And we will also highlight the opportunities of graphene for applications such as tunable transmission and active photonic modulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.