Abstract
Nowadays, infrared thermography, as a widely used non-destructive testing method, is increasingly studied for impact evaluation of composite structures. Sparse pattern extraction is attracting increasing attention as an advanced post-processing method. In this paper, an enhanced sparse pattern extraction framework is presented for thermographic sequence processing and defect detection. This framework adapts cropping operator and typical component extraction as a preprocessing step to reduce the dimensions of raw data and applies sparse pattern extraction algorithms to enhance the contrast on the defect area. Different cases are studied involving several defects in four basalt-carbon hybrid fiber-reinforced polymer composite laminates. Finally, comparative analysis with intensity distribution is carried out to verify the effectiveness of contrast enhancement using this framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.