Abstract
Improved passivation strategies to address the more complex surface structure of large-diameter nanocrystals are critical to the advancement of infrared photodetectors based on colloidal PbS. In this contribution, the performance of short-wave infrared (SWIR) photodiodes fabricated with PbS/PbClx (core/shell) nanocrystals vs their PbS-only (core) counterparts are directly compared. Devices using PbS cores suffer from shunting and inefficient charge extraction, while core/shell-based devices exhibit greater external quantum efficiencies and lower dark current densities. To elucidate the implications of the shell chemistry on device performance, thickness-dependent energy level offsets and interfacial chemistry of nanocrystal films with the zinc oxide electron-transport layer are evaluated. The disparate device performance between the two synthetic methods is attributed to unfavorable interface dipole formation and surface defect states, associated with inadequate removal of native organic ligands in core-only films. The core/shell system offers a promising route to manage the additional nonpolar (100) surface facets of larger nanocrystals that conventional halide ligand treatments fail to sufficiently passivate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.