Abstract
Accurate traffic forecasting is crucial for the advancement of smart cities. Although there have been many studies on traffic forecasting, the accurate forecasting of traffic volume is still a challenge. To effectively capture the spatio-temporal correlations of traffic data, a deep learning-based traffic volume forecasting model called the Enhanced Information Graph Recursive Network (EIGRN) is presented in this paper. The model consists of three main parts: a Graph Embedding Adaptive Graph Convolution Network (GE-AGCN), a Modified Gated Recursive Unit (MGRU), and a local information enhancement module. The local information enhancement module is composed of a convolutional neural network (CNN), a transposed convolutional neural network, and an attention mechanism. In the EIGRN, the GE-AGCN is used to capture the spatial correlation of the traffic network by adaptively learning the hidden information of the complex topology, the MGRU is employed to capture the temporal correlation by learning the time change of the traffic volume, and the local information enhancement module is employed to capture the global and local correlations of the traffic volume. The EIGRN was evaluated using the real datasets PEMS-BAY and PeMSD7(M) to assess its predictive performance The results indicate that the forecasting performance of the EIGRN is better than the comparison models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.