Abstract

In the long-chain dicarboxylic acids (DCA)-hyperproducing mutant Candida maltosa strains, methyl-ends of n-alkanes and fatty acids are hydroxylated by n-alkane inducible cytochromes P450 (P450alk), presumably as an essential step in DCA production. A significantly higher production of P450alks was observed in response to n-alkane in the DCA-hyperproducing mutant strain M2030 than in the wild-type strain 1098. Northern analysis demonstrated that n-tetradecane induction levels of mRNAs of all four ALK genes encoding major P450alk isoforms involved in n-alkane assimilation were significantly higher in the DCA-hyperproducing mutant than in the wild-type strain. Among these four ALK genes, enhancement of the transcriptional induction level of ALK5, which prefers fatty acids as substrates, was prominent in the mutant. In agreement with Northern analysis, promoters of ALK genes, especially that of ALK5, more strongly responded to n-alkanes in the DCA-hyperproducing mutant than in the wild-type strain. These results suggest that the transcriptional control of ALK genes in the DCA-hyperproducing mutant strains was altered preferably to accelerate DCA production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.