Abstract
Embryonic stem (ES) cells provide a potentially unlimited source of specialized cells for regenerative medicine. The ease of inducing stable genetic modifications in ES cells allows for in vitro manipulations to enhance differentiation into specific cell types and to optimize in vivo function of differentiated progeny in animal models of disease. We have generated mouse ES cells that constitutively express Bcl-XL, an antiapoptotic protein of Bcl-2 family. In vitro differentiation of Bcl-XL overexpressing ES (Bcl-ES) cells resulted in higher expression of genes related to midbrain dopamine (DA) neuron development and increased the number of ES-derived neurons expressing midbrain DA markers compared with differentiation of wild-type ES cells. Moreover, DA neurons derived from Bcl-ES cells were less susceptible to 1-methyl-4-phenylpyridium, a neurotoxin for DA neurons. On transplantation into parkinsonian rats, the Bcl-ES-derived DA neurons exhibited more extensive fiber outgrowth and led to a more pronounced reversal of behavioral symptoms than wild-type ES-derived DA neurons. These data suggest a role for Bcl-XL during in vitro midbrain DA neuron differentiation and provide an improved system for cell transplantation in a preclinical animal model of Parkinson's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.