Abstract

The Co2+ (0.1 M) incorporated hydroxyapatite (HAp) and beta tricalcium phosphate (β-TCP) nanoparticles were synthesized by the microwave assisted technique and sintering of HAp respectively. The samples were thermally treated at temperatures ranging from 200 to 1000°C. The partial substitutions of Co2+ at the Ca2+ site of HAp were confirmed from the slight shift (∼0.2°) in the (002) and (211) XRD peaks. The morphology of the nanoparticles was transformed from nanospheres to twinned particles on thermal treatment. In addition, the particle size of Co-600 was increased (from ∼50 nm to ∼100 nm) due to the recrystallization process. Further, the thermal treatment enhanced the crystallinity (41.15 to 90.16%), retentivity (Mr) and coercivity (Hc) of the nanoparticles. The cobalt incorporated HAp and β-TCP possessed paramagnetic property. The excellent bioactivity of β-TCP has been confirmed by the mineralization in simulated body fluid (SBF). Compared to HAp, β-TCP possessed better compatibility towards C2C12 cells on cobalt incorporation as evidenced by the in vitro cell viability. Moreover, both HAp and β-TCP have significantly inhibited the growth of MCF-7 on increasing the interaction time (72 h). Hence, the inhibition characteristics of Co2+ incorporated calcium phosphate (CaP) towards MCF-7 (without affecting the normal cells) demonstrate its competency as a potential material for cancer therapy over the already existing nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call