Abstract
Many potential applications in nanotechnology envisage the use of better-dispersed and functionalized preparations of carbon nanotubes. Single-walled carbon nanotubes (SWCNTs) were treated with 1:1 mixtures of concentrated nitric and sulfuric acids for 3 min in a microwave oven under 20 psi pressure followed by extensive dialysis to remove the acids. This treatment resulted in acid functionalized SWCNTs (AF-SWCNTs) that had high negative charge (Zeta potential −40 to −60 mV) and were well dispersed (98% of the particles <150 nm) in aqueous suspensions. In vitro and in vivo toxic effects of SWCNTs and AF-SWCNTs were compared. AF-SWCNTs exerted a strong cytotoxic effect on LA4 mouse lung epithelial cells in culture that could be blocked by prior treatment of the nanotubes with poly L-lysine which neutralized the electric charge and promoted re-agglomeration. AF-SWCNT, but not the unmodified SWCNT preparations, strongly inhibited cell cycling of LA4 cells. Both SWCNTs and AF-SWCNTS were however equally effective in inducing apoptotic responses in LA4 cells as examined using an Annexin V binding assay. Oro-pharyngeal aspiration of AF-SWCNT preparation induced a strong acute inflammatory response in the lungs of CD1 mice, compared to control SWCNTs which caused only a marginal effect. Taken together the results indicate that unlike pristine SWCNTs, acid-functionalized SWCNT preparations exert strong toxic effects in vitro and in vivo and these effects can be reversed by neutralizing their surface charge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.