Abstract
This study provides insight into the enhanced in situ bioremediation applied for remediation of groundwater contaminated by petroleum hydrocarbons. Activities prior to the application of this remediation approach included removal of the source of groundwater contamination—an underground storage tank and contaminated sediments—from the unsaturated zone. The hydraulic feasibility of this remediation approach was proved by hydraulic conductivity characterization of the site. Enhanced in situ bioremediation was performed by a combination of biostimulation and bioaugmentation within the closed bipolar system (one extraction and two injection wells). Biostimulation was conducted by addition of nutrients, and stimulation of oxidation processes by injection of H2O2, into the aquifer. Bioaugmentation/re-inoculation was achieved by injection of a zymogenous consortium of hydrocarbon degrading microorganisms isolated from the contaminated groundwater. The average extraction capacity was 0.5 l/s, with an average injection capacity of 0.25 l/s per well. The efficiency of the remediation approach was measured by changes in the content of total petroleum hydrocarbon (TPH), total chemoorganoheterotrophic (TC) and hydrocarbon degrading (HD) microorganisms. After biostimulation and bioaugmentation, the number of TC and HD microorganisms started to increase. This was followed by a decrease of TPH concentration in the groundwater from an initial 6.8–0.5 mg/l at the end of the bioremediation. The applied remediation approach was highly efficient and very effective in reducing TPH to acceptable levels. Together, these facts provide strong evidence of its potential for remediation of groundwater contaminated by petroleum hydrocarbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.