Abstract

Filling dead pixels or eliminating unwanted things is typically preferred within the applications of remotely sensed images. In proposed article, a competent image imprinting technique is demonstrated to resolve this drawback, relied nonlocal total variation. Initially remotely sensed images are effected by ill posed inverse problems i.e. image destripping, image de-noising etc. So it is required to use regularization technique to makes these problems well posed i.e. NLTV method, which is the combination of nonlocal operators and total variation model. Actually this method can make use of the good features of non-local operators for textured images and total variation method in edge preserving for color images. To optimize the proposed variation model, an Ant Colony Optimization algorithm is used in order to get similarity with the original image. And evaluate the outcomes of proposed technique with the existing technique i.e. MNLTV optimized by Bregmanized-operator-splitting algorithm which is a prediction based method. The investigation of all outcomes confirms the efficacy of this rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.