Abstract

Magnetic-field gradients are important for single-site addressability and electric-dipole spin resonance of spin qubits in semiconductor devices. We show that these advantages are offset by a potential reduction in coherence time due to the nonuniformity of the magnetic field experienced by a nuclear-spin bath interacting with the spin qubit. We theoretically study spins confined to quantum dots or at single donor impurities, considering both free-induction and spin-echo decay. For quantum dots in GaAs, we find that, in a realistic setting, a magnetic-field gradient can reduce the Hahn-echo coherence time by almost an order of magnitude. This problem can, however, be resolved by applying a moderate external magnetic field to enter a motional-averaging regime. For quantum dots in silicon, we predict a crossover from non-Markovian to Markovian behavior that is unique to these devices. Finally, for very small systems such as single phosphorus donors in silicon, we predict a breakdown of the common Gaussian approximation due to finite-size effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.