Abstract
Biobased packaging materials derived from carbon-neutral feedstocks are sustainable alternatives to conventional fossil-based polymers. In this study, a method was developed to prepare paper-sheets derived from Miscanthus × giganteus cellulose fibers for potential food contact applications. The papers were hydrophobized with modified lignin from Miscanthus × giganteus biomass and commercial Kraft alkali lignin through hydroxyethylation with ethylene carbonate, followed by esterification with propionic acid. The esterified lignin (10 % w/w) and cellulose acetate (5 % w/w, based on lignin content) were dissolved in acetone and applied as a coating on the miscanthus paper sheets. The esterified lignins were characterized using FTIR, NMR, DSC, TGA, and elemental analyses. The uncoated and coated paper-sheets had contact angle values 52.4° and >130°, respectively, indicating an increased surface hydrophobicity of the coated paper samples. The water vapor transmission rate decreased significantly from 213.7 (uncoated paper-sheet) to 63.3 g/m2.d (coated paper-sheet). The tensile strength of the coated paper (64.6 MPa) was higher than the uncoated counterpart (57.1 MPa). Results from this study suggest that the esterified lignin coated miscanthus paper is a promising hydrophobic food packaging material alternative to conventional fossil-based thermoplastics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.