Abstract

The aim of this work was to study promotion of ball milling and CO2 assistance on cellulose hydrolysis kinetics in water medium. Kinetic behaviors were analyzed based on first-order and shrinking core models. The results showed that cellulose hydrolysis is enhanced by ball milling and CO2 assistance. Ball milling reduced crystallinity and particle size of cellulose, resulting in high cellulose conversion, while hydrolysis promoted by CO2 assistance was weaker. Double-layer hydrolysis was observed for ball-milled cellulose, and rate constant in active layer is higher. Based on double-layer shrinking core model (DL-SCM), activation energy of cellulose conversion decreased from 73.6 to 39.8 kJ/mol when ball milling and CO2 assistance were applied. Hydrolysis active layer was about 0.9 μm, representing activated thickness of ball-milled cellulose. Hydrolysis promotion by crystallinity and particle size reduction was distinguished via DL-SCM, and crystal evolution possesses greater improvement than particle size decrease on hydrolysis of ball-milled cellulose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.