Abstract
In order to improve the hydrogen sorption kinetics of Mg at room temperature, the Mg–9.2wt%TiH1.971–3.7wt%TiH1.5 nanocomposite is successfully prepared by hydrogen plasma-metal reaction (HPMR) method and hydrogenation/dehydrogenation at 673 K. The Mg nanoparticles are hexagonal in shape with the size in the range of 50–190 nm. The spherical Ti hydrides nanoparticles of about 13 nm are uniformly dispersed on the surface of Mg nanoparticles. During hydrogenation/dehydrogenation cycle, the Ti hydrides nanoparticles restrain the growth of Mg nanoparticles. The Mg–TiH1.971–TiH1.5 nanocomposite quickly absorbs 4.3 wt% H2 in 10 min at room temperature and reaches a saturation value of 5.0 wt% in 60 min. The apparent activation energies for hydrogen absorption and desorption are 12.5 and 46.2 kJ mol−1, respectively. The improved kinetics and reduced activation energy are explained in terms of the nanostructure of Mg and the synergic catalytic effect of TiH1.971–TiH1.5 nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.