Abstract

A series of CdSe quantum dot (QD)/zirconium titanium phosphate (ZTP) was synthesized by solvothermal method using ethylene diamine by varying Cd to Se ratio from 1:1 to 1:4 and examined as robust catalysts for hydrogen evolution under visible light irradiation without using any co-catalyst. Extensively, the structural, optical, morphological, elemental and photoresponse spectra measurement of the composite system was studied. The catalytic activity of the materials was correlated with photoluminescence spectra, band gap energy and the photosensitization effect of CdSe quantum dot. Though neat CdSe quantum dot and zirconium titanium phosphate (ZTP) exhibited photocatalytic hydrogen evolution, the composite material showed remarkable high activity. Among these, 1CdSe quantum dot/zirconium titanium phosphate (ZTP) composite showed the highest hydrogen production (905.4μmol) within 3h which is consistent with low photoluminescence (PL) intensity, wide band gap energy and the photosensitization effect of CdSe quantum dot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call