Abstract

Biohydrogen and subsequent biomethane generation from biomass is a promising strategy for renewable energy supply, because this combination can lead to higher energy recovery efficiency and faster fermentation than single methane fermentation. Microbial consortium control by retaining hydrogen-producers through the addition of microbial carriers is an alternative to constructing hydrogen-producing reactors. Here we report the use of carbon nanotubes (CNTs) as microbial carriers to enhance microbial retention and the production of biohydrogen. Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors with CNTs at 100 mg/L achieved a maximal hydrogen production rate of 5.55 L/L/d and a maximal hydrogen yield of 2.45 mol/mol glucose. Compared to frequently used activated carbon (AC) particles, CNTs resulted in quicker startup and better performance of hydrogen fermentation in UASB reactors. Scanning electron microscopy (SEM) and pyrosequencing results revealed that the reactor with CNTs led to a high proportion of hydrogen-producing bacteria among the microbial consortium, which endowed the microbes with strong flocculation capacity and hydrogen productivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.