Abstract

AbstractA wide range of inorganic nanostructures have been used as photocatalysts for generating H2. To increase activity, Z‐scheme photocatalytic systems have been implemented that use multiple types of photoactive materials and electron mediators. Optimal catalysis has previously been obtained by interfacing different materials through aggregation or epitaxial nucleation, all of which lowers the accessible active surface area. DNA has now been used as a structure‐directing agent to organize TiO2 and CdS nanocrystals. A significant increase in H2 production compared to CdS or TiO2 alone was thus observed directly in solution with no sacrificial donors or applied bias. The inclusion of benzoquinone (BQ) equidistant between the TiO2 and CdS through DNA assembly further increased H2 production. While the use of a second quinone in conjunction with BQ showed no more improvement, its location within the Z‐scheme was found to strongly influence catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.