Abstract
The effect of first-row transition metal nanoparticles as co-catalysts on the activity of mesoporous graphitic carbon nitride (m-gCN) and black phosphorous (BP) heterojunctions (m-gCN/BP) in the photocatalytic hydrogen evolution reaction (HER) is investigated comparatively. Three m-gCN/BP-M (M: Co, Ni, and Cu) ternary nanocomposites were prepared via wetness impregnation and chemical reduction of metal precursors on as-prepared m-gCN/BP binary heterojunctions. The photocatalytic HER activities of m-gCN, m-gCN/BP, m-gCN/BP-Ni, m-gCN/BP-Co, and m-gCN/BP-Cu nanocomposites were determined to be 0.233, 0.330, 0.442, 0.326, and 0.223 mmol g−1 h−1, respectively, under visible light illumination. These results revealed that type of transition metal NPs as co-catalysts have considerable effect on the activity of m-gCN/BP heterojunctions in the photocatalytic HER, among which m-gCN/BP-Ni is the best one. The DFT calculations performed on the nanocomposites revealed that m-gCN/BP-Ni possesses the lowest band gap and the highest visible light absorption resulting in the highest photocatalytic activity in HER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.