Abstract

Magnesium hydride (MgH2) offers excellent capacity to store hydrogen, but it suffers from the high desorption temperature (>283 °C for starting release hydrogen). In this work, we calculated the hydrogen desorption energy of Mg76H152 clusters with/without non-metal dopants by density functional theory method. Phosphorus (P), as identified as the best dopant, can reduce the reaction energy for releasing one hydrogen molecule from 0.75 eV (bulk MgH2) to 0.20 eV. Inspired by the calculation, P-doped ordered mesoporous carbon (CMK-3) was synthesized by one-step method and employed as the scaffold for loading MgH2 nanoparticles, forming MgH2@P/CMK-3. Element analysis shows that phosphorus dopants have been incorporated into the CMK-3 scaffold and magnesium and phosphorus elements are well-distributed in carbon scaffold hosts. Tests of hydrogen desorption confirmed that P-doping can remarkably enhance the hydrogen release properties of nanoconfined MgH2 at low temperature, specifically ∼1.5 wt. % H2 released from MgH2@P/CMK-3 below 200 °C. This work, based on the combination of computational calculations and experimental studies, demonstrated that the combined approach of non-metal doping and nano-confinement is promising for enhancing the hydrogen desorption properties of MgH2, which provides a strategy to address the challenge of hydrogen desorption from MgH2 at mild operational conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call