Abstract

We employ a ternary eutectic Mg76.87Ni12.78Y10.35 alloy to achieve a fine eutectic structure with long-period stacking ordered (LPSO) structure, and investigate the corresponding hydrogen storage behavior. The as-cast Mg76.87Ni12.78Y10.35 alloy is composed of Mg15NiY, Mg2Ni, MgNi4Y and Mg phases. A high density of stacking faults and 14H-type LPSO structures form in the Mg15NiY phase. This fine ternary eutectic structure has shown significant improvement in promotion of the activation and following hydrogen absorption kinetics compared with as-cast non-eutectic structure. Pressure-Composition-Temperature (PCT) curves demonstrate two major pressure platforms due to the presence of Mg15NiY and Mg2Ni in our Mg–Ni–Y alloys. Nanosized Mg2NiHx, MgH2 and YHx are insitu generated from the decomposition of LPSO structure during hydrogenation. The fine ternary eutectic structure and dispersed nanocatalysts from decomposition of LPSO structure synergistically facilitate the activation and hydrogen absorption kinetics of ternary eutectic Mg–Ni–Y alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call