Abstract

Vinblastine sulphate, an antimitotic and anti-inflammatory agent, modifies the thermal behaviour of the model membranes: the dipalmitoylphosphatidylcholine DPPC bilayers. The mixed DPPC and vinblastine sulphate multibilayers in the range of DPPC mole fraction 0.4 to 1 display clearly the gel-liquid crystal (chain melting) transition on the thermograms obtained with a differential scanning microcalorimeter. The molar enthalpy of this transition is slightly depressed by vinblastine sulphate (less than 10%). The temperature-composition phase diagram corresponds to a total insolubility of vinblastine sulphate inside the frozen (gel) bilayers and to a solubility of 0.2 (mole fraction) of vinblastine sulphate inside the fluid (liquid crystalline) bilayers. The dissolved vinblastine sulphate depresses the cooperativity number of the frozen ⇄ fluid transition of the bilayers very strongly (4- to 5-times). Up to its solubility concentration, vinblastine sulphate increases the amount of the structural water of the bilayers and modifies the thermal behaviour of this water. The ‘expelled’ vinblastine sulphate molecules are retained by the polar groups of DPPC molecules and screen their electrostatic interactions with the structural water molecules. Below 0°C, the amount of the structural water, which forms the aqueous separation between two bilayers, is enhanced by vinblastine sulphate. However, the drug reduces (screens) the bilayers interaction with the structural water molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.