Abstract
Localization in wireless networks presents enormous challenges for scientists and engineers. Some of the most commonly used techniques for localization are based on time of arrival (ToA), received signal strength (RSS) and angle of arrival (AoA) of the signals. In this paper we analyze and propose improvements to the location accuracy of hybrid (AoA-ToA) localization systems. The location coordinates are obtained using a linear least squares (LLS) algorithm. A closed form expression for the mean square error (MSE) of the LLS estimator is derived. Furthermore, the information present in the covariance of the incoming signals is utilized and a novel weighted linear least squares (WLLS) method is proposed. It is shown via simulation that the theoretical MSE accurately predicts the performance of the LLS estimator. It is also shown via simulation that the WLLS algorithm exhibits better performance than the LLS algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.