Abstract

The feasibility of producing an Al-Zn-Cu-Mg (7075) aluminum (Al) alloy using high-frequency electromagnetic casting (HFEMC) and electromagnetic stirring (EMS) was explored, and the microstructure, hot compressive deformation characteristics, and processing maps of the as-cast and homogenized EMS 7075 alloys were examined. The obtained results were compared with those of an alloy of the same composition, produced by direct chill casting (DCC). Application of the HFEMC/EMS technology resulted in grain refinement and suppression of dendritic growth. The grain size of the as-cast EMS 7075 alloy was smaller than that of the as-cast DCC 7075 alloy by more than half. This grain-size reduction increased the strain rate sensitivity and decreased the flow stress. The grain refinement also resulted in enhanced hot workability. Hot workability of the EMS 7075 alloy, however, considerably deteriorated after homogenization treatment. This resulted from the disappearance of the solute-segregated phases that play a role of accelerating dynamic recovery and continuous dynamic recrystallization during compressive deformation and the occurrence of considerable grain coarsening during homogenization treatment. The as-cast EMS 7075 alloy also showed a higher quality of post-hot working microstructure (after T6 heat treatment) compared to the homogenized EMS 7075 alloy. This resulted because the segregated phases in the as-cast microstructure served as the nucleation sites for new grains during static recrystallization by having created localized regions of high dislocation density around them during compressive deformation, especially at high strain rates. The current study showing that the as-cast EMS microstructure can yield a high hot workability as well as a high quality of post-hot working microstructure encourages the direct use of as-cast EMS 7075 alloy billets as feedstock for hot extrusion or forging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.