Abstract
Small molecules and oligomers can be synthesized with very high purity and precise molecular weights, but they often do not form uniform thin films while processed from solution. Decreased intermolecular contacts between the small molecules are another disadvantage. To increase the intermolecular contacts in small molecules, we have chosen i-indigo, as one of the conjugated molecular units. The electron poor i-indigo has been connected with electron rich triphenylamine to synthesize a donor-acceptor-donor type small molecule. The propeller shaped triphenylamine helps to increase the solubility of the small molecule as well as isotropic charge transport. The intermolecular spacing between the molecules has been found to be low and did not vary as a function of thermal annealing. This implies that the intermolecular contacts between the small molecules are enhanced, and they do not vary as a function of thermal annealing. Organic field effect transistors (OFET) fabricated using a small molecule exhibited a hole carrier mobility (μ) of 0.3 cm(2)/(V s) before thermal annealing. A marginal increase in μ was observed upon thermal annealing at 150 °C, which has been attributed to changes in thin film morphology. The morphology of the thin films plays an important role in charge transport in addition to the intermolecular spacing that can be modulated with a judicious choice of the conjugated molecular unit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.