Abstract

ABSTRACTBecause of outstanding performances of the SiC fiber‐reinforced ceramic matrix composites in aircraft/aerospace systems, two silicon carbide fiber‐reinforced oxide matrices (SiCf/oxides) composites have been prepared by a precursor infiltration and sintering method. Results indicate that the flexural strength of the SiCf/Al2O3–SiO2 composite reaches 159 MPa, whereas that of the SiCf/Al2O3 composite is only 50 MPa. The high‐temperature microwave absorption properties of the composite are significantly enhanced due to choosing Al2O3 and SiO2 as the hybrid matrices. Particularly, the minimum reflection loss (RL) value of the SiCf/Al2O3–SiO2 composite reaches −37 dB in the temperature of 200 °C at 8.6 GHz, and the effective absorption bandwidth (RL ≤ −5 dB) is 4.2 GHz (8.2–12.4 GHz) below 400 °C. The superior microwave absorption properties at high temperatures indicate that the SiCf/Al2O3–SiO2 composite has promising applications in civil and military areas. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47097.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.