Abstract

A Li2O–2B2O3–glass-coated LiNi0.5Mn1.5O4 (LNMO) cathode active material (GC-LNMO) was synthesized to enhance the thermal stability of LNMO-based electrodes for lithium-ion batteries. The morphologies of the surface-coating layers were analyzed using transmission electron microscopy. The glass coating prevented the surface of the LNMO-based electrode from being directly exposed to the liquid electrolyte solution, preventing Mn at the electrode surface from dissolving into the electrolyte and thus preventing the cell impedance from increasing through the undesirable formation of a cathode–electrolyte-interphase layer and the development of facile charge transfer kinetics during cycling. The electrochemical performance measurements demonstrated that the GC-LNMO-based electrode exhibited remarkably enhanced electrochemical reversibly and stability at elevated temperature (60°C).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.