Abstract

We consider a SUSY breaking scenario without the Polonyi problem. To solve the problem, the enhanced couplings of the Polonyi field to an inflaton, gauge kinetic functions and itself are assumed. As a result, a gaugino mediated SUSY breaking occurs. In this scenario, the Higgs boson mass becomes consistent with the recently observed value of the Higgs-like boson (i.e., mh≃125 GeV) for the gluino mass about 4 TeV, which is, however, out of the reach of the LHC experiment. We show that the trilinear coupling of the scalar top is automatically enhanced by the presence of the extra matters. With such extra matters, the Higgs mass as large as 125 GeV can be realized with the gluino mass of 1–2 TeV which is within the reach of the LHC experiment. In our scenario, the gravitino is the lightest SUSY particle and the candidate for dark matter, and the Wino, Bino, and sleptons are in the range from 200 GeV to 700 GeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.