Abstract

Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer biology and therapeutics.

Highlights

  • Tumor cells have an increased demand for nutrients, which provide cellular energy and metabolic building blocks

  • Heme serves as a prosthetic group in many proteins and enzymes that transport, store and use oxygen and can directly regulate many processes involved in oxygen metabolism [15,16]

  • We reasoned that the enhanced oxygen consumption in non-small-cell lung cancer (NSCLC) cells may be attributable to increased levels of heme and hemoproteins

Read more

Summary

Introduction

Tumor cells have an increased demand for nutrients, which provide cellular energy and metabolic building blocks. Increased metabolic demand in tumor cells often accompanies altered metabolism. Recent studies suggest that metabolic enzymes can act as tumor suppressors (e.g., fumarate hydratase and succinate dehydrogenase), or oncogenes (e.g., mutant isocitrate dehydrogenase 1 and 2) [6,7,8]. These recent studies confirmed that altered metabolism is a hallmark of cancer, and suggested that the changes in metabolism in cancer cells are much more complex than that was suggested initially

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call